Literature With Web-Links

Gout & Uric Acid

Brosh S, Boer P, Kupfer B, de Vries A, Sperling O. De novo synthesis of purine nucleotides in human peripheral blood leukocytes. Excessive activity of the pathway in hypoxanthine-guanine phosphoribosyltransferase deficiency. J Clin Invest. 1976;58(2):289–297, [PubMed]

Hershfield MS, Seegmiller JE. Gout and the regulation of purine biosynthesis. Horiz Biochem Biophys. 1976;2:134-62. Review, [PubMed]

Becker MA, Kim M. Regulation of purine synthesis de novo in human fibroblasts by purine nucleotides and phosphoribosylpyrophosphate. J Biol Chem. 1987 Oct 25;262(30):14531-7, [PubMed]

Yamaoka T, Itakura M, Metabolism of purine nucleotides and the production of uric acid,  Nihon Rinsho. 1996 Dec;54(12):3188-94. Review. Japanese, [PubMed]

​Richette P, Bardin T. Gout. Lancet. 2010;375(9711):318–28. [PubMed] [Google Scholar]

 

Choi HK, Mount DB, Reginato AM. Pathogenesis of gout. Ann Intern Med. 2005;143:499–516.[PubMed] [Google Scholar]

Wu XW, Lee CC, Muzny DM, Caskey CT. Urate oxidase: primary structure and evolutionary implications. Proc Natl Acad Sci USA. 1989;86:9412–6. [PMC free article] [PubMed] [Google Scholar]

 

Eggebeen AT. Gout: an update. Am Fam Physician. 2007;76(6):801–8. [PubMed] [Google Scholar]

 

Ames BN, Cathcart R, Schwiers E, Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant - and radical - caused aging and cancer: a hypothesis. Proc Natl Acad Sci USA. 1981;78:6858–62. [PMC free article] [PubMed] [Google Scholar]

 

Campion EW, Glynn RJ, DeLabry LO. Asymptomatic hyperuricemia. Risks and consequences in the Normative Aging Study. Am J Med. 1987;82:421–6. [PubMed] [Google Scholar]

 

Mikuls TR, Farrar JT, Bilker WB, Fernandes S, Schumacher HR, Jr, Saag KG. Gout epidemiology: results from the UK General Practice Research Database 1990-1999. Ann Rheum Dis. 2005;64(2):267–72.[PMC free article] [PubMed] [Google Scholar]

 

Terkeltaub RA. Clinical practice. Gout. N Engl J Med. 2003;349:1647–55. [PubMed] [Google Scholar]

 

Zhu Y, Pandya BJ, Choi HK. Prevalence of gout and hyperuricemia in the US general population: the National Health and Nutrition Examination Survey 2007-2008. Arthritis Rheum. 2011;63(10):3136–41.[PubMed] [Google Scholar]

 

Zhang W, Doherty M, Bardin T, et al. EULAR evidence-based recommendations for gout. Part II: Management. Report of a task force of the EULAR Standing Committee for International Clinical Studies Including Therapeutics (ESCISIT) Ann Rheum Dis. 2006;65:1312–24. [PMC free article] [PubMed] [Google Scholar]

 

Terkeltaub R. Update on gout: new therapeutic strategies and options. Nat Rev Rheumatol. 2010;6(1):30–8. [PubMed] [Google Scholar]

Singh H, Torralba KD. Therapeutic challenges in the management of gout in the elderly. Geriatrics. 2008;63(7):13–8. [PubMed] [Google Scholar]

 

De Leonardis F, Govoni M, Colina M, Bruschi M, Trotta F. Elderly-onset gout: a review. Rheumatol Int. 2007;28(1):1–6. [PubMed] [Google Scholar]

 

Gout Related Conditions

Abbott RD, Brand FN, Kannel WB, Castelli WP. Gout and coronary heart disease: the Framingham study. J Clin Epidemiol. 1988;41:237–42. [PubMed] [Google Scholar]

Grassi D, Ferri L, Desideri G, et al. Chronic hyperuricemia, uric acid deposit, and cardiovascular risk. Curr Pharm Des. 2013;19(13):2432–2438, [NIH]

Feig DI, Kang DH, Johnson RJ. Uric Acid and Cardiovascular Risk. N Engl J Med. 2008;359(17):1811–21. [PMC free article] [PubMed] [Google Scholar]

Choi HK, Curhan G. Independent impact of gout on mortality and risk for coronary heart disease. Circulation. 2007;116:894–900. [PubMed] [Google Scholar]

Choi HK, Ford ES, Li C, Curhan G. Prevalence of the metabolic syndrome in patients with gout: the Third National Health and Nutrition Examination Survey. Arthritis Rheum. 2007;57:109–15. [PubMed] [Google Scholar]

 

Krishnan E, Baker JF, Furst DE, Schumacher HR. Gout and the risk of acute myocardial infarction. Arthritis Rheum. 2006;54:2688–96. [PubMed] [Google Scholar]

 

Krishnan E, Svendsen K, Neaton JD, Grandits G, Kuller LH MRFIT Research Group. Long-term cardiovascular mortality among middle-aged men with gout. Arch Intern Med. 2008;168:1104–10.[PubMed] [Google Scholar]

 

Johnson RJ, Kang DH, Feig D, et al. Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease? Hypertension. 2003;41(6):1183–90. [PubMed] [Google Scholar]

Perlstein TS, Gumieniak O, Williams GH, et al. Uric acid and the development of hypertension: the normative aging study. Hypertension. 2006;48(6):1031–6. [PubMed] [Google Scholar]

 

Syamala S, Li J, Shankar A. Association between serum uric acid and prehypertension among US adults. J Hypertens. 2007;25:1583–9. [PubMed] [Google Scholar]

 

Lee JAE, Kim YG, Choi YH, Huh W, Kim DJ, Oh HY. Serum uric acid is associated with microalbuminuria in prehypertension. Hypertension. 2006;47:962–7. [PubMed] [Google Scholar]

 

Brand FN, McGee DL, Kannel WB, Stokes J, III, Castelli WP. Hyperuricemia as a risk factor of coronary heart disease: the Framingham Study. Am J Epidemiol. 1985;121:11–8. [PubMed] [Google Scholar]

 

Loachimescu AG, Brennan DM, Hoar BM, Hazen SL, Hoogwerf BJ. Serum uric acid is an independent predictor of all-cause mortality in patients at high risk of cardiovascular disease: a preventive cardiology information system (PreCIS) database cohort study. Arthritis Rheum. 2008;58(2):623–30. [PubMed] [Google Scholar]

 

Ndrepepa G, Braun S, Haase HU, et al. Prognostic Value of Uric Acid in Patients With Acute Coronary Syndromes. Am J Cardiol. 2012 Feb 9; [Epub ahead of print] [PubMed] [Google Scholar]

 

Gout & Food, Supplements, Herbs, Enzymes, Bacteria

Rosa D, Ferreira C, Fonseca A, Reis S, Dias M, Siqueira N, Silva L, Neves C, Oliveira L, Machado A,  Peluso M, Kefir reduces insulin resistance and inflammatory cytokine expression in an animal model of metabolic syndrome, Journal Food & Function, 2016, VL 6, Is 8, The Royal Society of Chemistry, [RSOC]

Verce M, De Vuyst L, Weckx S. Shotgun Metagenomics of a Water Kefir Fermentation Ecosystem Reveals a Novel Oenococcus Species. Front Microbiol. 2019 Mar 13;10:479, [PubMed]

Laureys D, De Vuyst L. Water kefir as a promising low-sugar probiotic fermented beverage. Arch Public Health. 2014 Jun 6;72(Suppl 1), PMCID: PMC4092267, [PubMed]

Zheng Y, Lu Y, Wang J, Yang L, Pan C, Huang Y. Probiotic properties of Lactobacillus strains isolated from Tibetan kefir grains. PLoS One. 2013 Jul 22;8(7):e69868, Print in 2013. PubMed PMID: 23894554; PubMed Central PMCID: PMC3718794, [PubMed]

Kim DH, Jeong D, Kim H, Seo KH. Modern perspectives on the health benefits of kefir in the next-generation sequencing era: Improvement of the host gut microbiota. Crit Rev Food Sci Nutr. 2019;59(11):1782-1793, Epub 2018 Feb 9. Review. PubMed PMID: 29336590, [PubMed]

Slattery C, Cotter PD, O'Toole PW. Analysis of Health Benefits Conferred by Lactobacillus Species from Kefir. Nutrients. 2019 Jun 1;11(6, Review. PubMed PMID: 31159409; PubMed Central PMCID: PMC6627492, [PubMed]

Erdogan FS, Ozarslan S, Guzel-Seydim ZB, Kök Taş T. The effect of kefir produced from natural kefir grains on the intestinal microbial populations and antioxidant capacities of Balb/c mice. Food Res Int. 2019 Jan;115:408-413, Epub 2018 Oct 30. Review. PubMed PMID: 30599959, [PubMed]

Velićanski AS, Cvetković DD, Markov SL, Šaponjac VT, Vulić JJ. Antioxidant and Antibacterial Activity of the Beverage Obtained by Fermentation of Sweetened Lemon Balm
(Melissa officinalis L.) Tea with Symbiotic Consortium 
of Bacteria and Yeasts. Food Technol Biotechnol. 2014 Dec;52(4):420-429, [PubMed]

Gaggìa F, Baffoni L, Galiano M, Nielsen DS, Jakobsen RR, Castro-Mejía JL, Bosi S, Truzzi F, Musumeci F, Dinelli G, Di Gioia D. Kombucha Beverage from Green, Black and Rooibos Teas: A Comparative Study Looking at Microbiology, Chemistry and Antioxidant Activity. Nutrients. 2018 Dec 20;11(1), [PubMed]

Villarreal-Soto SA, Beaufort S, Bouajila J, Souchard JP, Taillandier P. Understanding Kombucha Tea Fermentation: A Review. J Food Sci. 2018 Mar;83(3):580-588, [PubMed]

Julie M. Kapp, Walton Sumner, Kombucha: a systematic review of the empirical evidence of human health benefit, Annals of Epidemiology, Volume 30, 2019, Pages 66-70, ISSN 1047-2797, [ScienceDirect]

Jatuworapruk K, Srichairatanakool O, Sunjaijean S, Kasitanon N, Wangkaew S,  Louthrenoo W,  (2014). Effects of Green Tea Extract on Serum Uric Acid and Urate Clearance in Healthy Individuals. Journal of clinical rheumatology: practical reports on rheumatic & musculoskeletal diseases. 20. 310-313. 10.1097, [ResearchGate]

Zhang Y, Yang T, Zeng C, Wei J, Li H, Xiong YL, Yang Y, Ding X, Lei G. Is coffee consumption associated with a lower risk of hyperuricemia or gout? A systematic review and meta-analysis. BMJ Open. 2016 Jul 8;6(7):e009809, Erratum in BMJ Open. 2016 Jul 18;6(7):e009809corr1. PMID: 27401353; PMCID: PMC4947733. [PubMed]

Zhu C, Tai LL, Wan XC, Li DX, Zhao YQ, Xu Y. Comparative effects of green and black tea extracts on lowering serum uric acid in hyperuricemic mice. Pharm Biol. 2017 Dec;55(1):2123-2128. [PubMed]

Zhang Y, Cui Y, Li XA, Li LJ, Xie X, Huang YZ, Deng YH, Zeng C, Lei GH. Is tea consumption associated with the serum uric acid level, hyperuricemia or the risk of gout? A systematic review and meta-analysis. BMC Musculoskelet Disord. 2017 Feb 28;18(1):95, [PubMed]

Pervin M, Unno K, Ohishi T, Tanabe H, Miyoshi N, Nakamura Y. Beneficial Effects of Green Tea Catechins on Neurodegenerative Diseases. Molecules. 2018 May 29;23(6):1297, [PubMed]

Suzuki Y, Miyoshi N, Isemura M. Health-promoting effects of green tea. Proc Jpn Acad Ser B Phys Biol Sci. 2012;88(3):88-101, [PubMed]

Chacko SM, Thambi PT, Kuttan R, Nishigaki I. Beneficial effects of green tea: a literature review. Chin Med. 2010 Apr 6;5:13, [PubMed]

Spencer P, Health Benefits of Green Tea, [WebMD]

Pérez-Cano FJ, Castell M. Flavonoids, Inflammation and Immune System. Nutrients. 2016 Oct 21;8(10):659, PMID: 27775647; PMCID: PMC5084045, [PubMed]

White AR, Randall C, Harding G, Paterson C. Patient consensus on mode of use of nettle sting for musculoskeletal pain. Complement Ther Med. 2011 Aug;19(4):179-86, Epub 2011 Jul 27, [PubMed]

Bakhshaee M, Mohammad Pour AH, Esmaeili M, Jabbari Azad F, Alipour Talesh G, Salehi M, Noorollahian Mohajer M. Efficacy of Supportive Therapy of Allergic Rhinitis by Stinging Nettle (Urtica dioica) root extract: a Randomized, Double-Blind, Placebo-Controlled, Clinical Trial. Iran J Pharm Res. 2017 Winter;16(Suppl):112-118. PMID: 29844782; PMCID: PMC5963652, [PubMed]

Johnson TA, Sohn J, Inman WD, Bjeldanes LF, Rayburn K. Lipophilic stinging nettle extracts possess potent anti-inflammatory activity, are not cytotoxic and may be superior to traditional tinctures for treating inflammatory disorders. Phytomedicine. 2013 Jan 15;20(2):143-7. doi: 10.1016/j.phymed.2012.09.016. Epub 2012 Oct 23. PMID: 23092723; PMCID: PMC3529973, [PubMed]

Nieper H, Lithium Articles, [BrewerScience]

Jung YM, Lee SH, Lee DS, You MJ, Chung IK, Cheon WH, Kwon YS, Lee YJ, Ku SK. Fermented garlic protects diabetic, obese mice when fed a high-fat diet by antioxidant effects. Nutr Res. 2011 May;31(5):387-96, 2011.04.005. [PubMed]

Kim HN, Kang SG, Roh YK, Choi MK, Song SW. Efficacy and safety of fermented garlic extract on hepatic function in adults with elevated serum gamma-glutamyl transpeptidase levels: a double-blind, randomized, placebo-controlled trial. Eur J Nutr. 2017 Aug;56(5):1993-2002, Epub 2016 Oct 14. Erratum in: Eur J Nutr. 2017 Jan 11, [PubMed]

Daliri EB, Kim SH, Park BJ, et al. Effects of different processing methods on the antioxidant and immune-stimulating abilities of garlic. Food Sci Nutr. 2019;7(4):1222–1229. Published 2019 Feb 28, [PubMed]

Basar S, Uhlenhut K, Högger P, Schöne F, Westendorf J. Analgesic and anti-inflammatory activity of Morinda citrifolia L. (Noni) fruit. Phytother Res. 2010 Jan;24(1):38-42,  [PubMed] PMID: 19548275.

Abu Bakar FI, Abu Bakar MF, Rahmat A, Abdullah N, Sabran SF, Endrini S. Anti-gout Potential of Malaysian Medicinal Plants. Front Pharmacol. 2018 Mar 23;9:261, eCollection 2018. Review. PubMed PMID: 29628890; [PubMed].

Dussossoy E, Brat P, Bony E, Boudard F, Poucheret P, Mertz C, Giaimis J, Michel A. Characterization, anti-oxidative and anti-inflammatory effects of Costa Rican noni juice (Morinda citrifolia L.). J Ethnopharmacol. 2011 Jan 7;133(1):108-15, Epub 2010 Sep 19. [PubMed] PMID: 20858541.

Motshakeri, Mahsa & Mohd Ghazali, Hasanah. (2014). Nutritional, phytochemical and commercial quality of Noni fruit; a multi-beneficial gift from nature. Review Paper. Trends in Food Science & Technology, [ScienceDirect]

Johnson RJ, Rideout BA. Uric acid and diet - insights into the epidemic of cardiovascular disease. N Engl J Med. 2004;350:1071–4. [PubMed] [Google Scholar]

Dessein PH, Shipton EA, Stanwix AE, Joffe BI, Ramokgadi J. Beneficial effects of weight loss associated with moderate calorie/carbohydrate restriction, and increased proportional intake of protein and unsaturated fat on serum urate and lipoprotein levels in gout: a pilot study. Ann Rheum Dis. 2000;59:539–43. [PMC free article] [PubMed] [Google Scholar]

 

Takahashi S, Yamamoto T, Tsutsumi Z, Moriwaki Y, Yamakita J, Higashino K. Close correlation between visceral fat accumulation and uric acid metabolism in healthy men. Metabolism. 1997;46(10):1162–5. [PubMed] [Google Scholar]

M. Akram, M. Ibrahim Shah, Khan Usmanghan, E. Mohiuddin, Abdul Sami, M. Asif, S.M. Ali Shah, Khalil Ahmed,  and Ghazala Shaheen, Zingiber officinale Roscoe (A Medicinal Plant), Pakistan Journal of Nutrition 10 (4): 399-400, 2011 ISSN 1680-5194
© Asian Network for Scientific Information, 2011, [ResearchGate]

Hassan F. Al-Azzawie, Samah A.Abd, Effects of Crude Flavonoids from Ginger ( Zingiber officinale), on Serum Uric Acid Levels, Biomarkers of Oxidative Stress and Xanthine Oxidase Activity in Oxonate-Induced Hyperuricemic Rats, ISSN 2320-5407, International Journal of Advanced Research (2015), Volume 3, Issue 10, 1033 – 1039, [ijar]

Al-Nahain, A., Jahan, R., & Rahmatullah, M. (2014). Zingiber officinale: A Potential Plant against Rheumatoid Arthritis. Arthritis, 2014, 159089, [NIH]

Enny Virda Yuniarti, Emyk Windartik, Amar Akbar, Effect Of Red Ginger Compress To Decrease Scale Of Pain Gout Arthritis Patients, INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 6, ISSUE 10, OCTOBER 2017, ISSN 2277-8616, [ijstr]

Akram, 2009. Clinical evaluation of herbal medicine for the treatment of hyperuricemia and gout, M. Phil Thesis, Hamdard University, Karachi.

McMaster University. "Moderate consumption of fats, carbohydrates best for health, international study shows." ScienceDaily. ScienceDaily, 29 August 2017, [SD

Li R, Yu K, Li C. Dietary factors and risk of gout and hyperuricemia: a meta-analysis and systematic review. Asia Pac J Clin Nutr. 2018;27(6):1344-1356, [Pubmed]

Zhang Y, Qiu H. Folate, Vitamin B6 and Vitamin B12 Intake in Relation to Hyperuricemia. J Clin Med. 2018;7(8):210. Published 2018 Aug 11, [PubMed]

Álvarez-Lario B, Alonso-Valdivielso JL. [Hyperuricemia and gout; the role of diet]. Nutr Hosp. 2014 Apr 1;29(4):760-70, Review. Spanish, [PubMed] PMID: 24679016

Choi HK, Atkinson K, Karlson EW, Willett W, Curhan G. Purine-rich foods, dairy and protein intake, and the risk of gout in men. N Engl J Med. 2004 Mar 11;350(11):1093-103. PubMed PMID: 15014182, [Pubmed]

Beyl RN Jr, Hughes L, Morgan S. Update on Importance of Diet in Gout. Am J Med. 2016 Nov;129(11):1153-1158, Epub 2016 Jul 22. Review, [PubMed] PMID: 27452679

Nickolai B, Kiss C. [Nutritional therapy of gout]. Ther Umsch. 2016;73(3):153-8, Review. German. PubMed PMID: 27008448, [Pubmed]​

Welch A, Mulligan A, Bingham S, Khaw K, "Urine pH is an indicator of dietary acid-base load, fruit and vegetables, and meat intakes: results from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk population study", Br J Nutr. 2008 Jun;99(6):1335-43. Epub 2007 Nov 28, [Pubmed].

Duell M, Daily Mail, "Student, 20, died after taking regular doses of apple cider vinegar",  29 October 2019, [Daily Mail]

Centers for Disease Control and Prevention, "Unexplained Severe Illness Possibly Associated with Consumption of Kombucha Tea -- Iowa", 1995, December 08, 1995, [CDC.gov]​

Goyal A, Sharma V, Upadhyay N, Gill S, Sihag M. Flax, and flaxseed oil: an ancient medicine & modern functional food. J Food Sci Technol. 2014;51(9):1633–1653, [NIH]

Dalbeth N, Wong S, Gamble G, Horne A, Mason B, Pool B, Fairbanks L, McQueen L, Cornish J, Reid I, Palmano K, Acute effect of milk on serum urate concentrations: a randomized controlled crossover trial, Annals of the Rheumatic Diseases Sep 2010, 69 (9) 1677-1682; DOI: 10.1136/ard.2009.124230 [AOTRD]

 

Stephens, W. Dolaeus upon the Cure of Gout by Milk-diet. Osborn and Longman, London, 1732.

Miura, D.; Anzai, N.; Jutabha, P.; Chanluang, S.; He, X.; Toshiyuki, F.; Endou, H. Human urate transporter 1 (hURAT1) mediates the transport of orotate, J. Physiol. Sci. 2011, 61, 253–257

Löffler, M., Carrey, E. A., & Zameitat, E. (2016). Orotate (orotic acid): An essential and versatile molecule. Nucleosides, Nucleotides and Nucleic Acids, 35(10-12), 566–577.doi:10.1080/15257770.2016.1147580, [NIH], [DOCKSCI]

Sook Choi, Han Sam Cha, Young Soon Lee, Physicochemical and Antioxidant Properties of Black Garlic, Molecules 2014, 19, 16811-16823, [PDF] mdpi.com

Setiawan, A. A., Kumala, S., Dian Ratih, L., & Yuliana, N. D. In Silico Study On S-Allyl Cysteine And Quercetin From Garlic (Allium sativum Linn) As Xanthine Oxidase Inhibitor [PDF]

Schlesinger, N. (2005). Dietary factors and hyperuricemia. Current pharmaceutical design, 11(32), 4133-4138, [Bentham]

Imran M, Nadeem M, Manzoor MF, et al. Fatty acids characterization, oxidative perspectives and consumer acceptability of oil extracted from pre-treated chia (Salvia hispanica L.) seeds. Lipids Health Dis. 2016;15(1):162. Published 2016 Sep 20, [NIH]

Ixtaina VY, Nolasco SM, Tomas MC. Physical properties of chia (Salvia hispanica L.) seeds. Ind Crop Prod. 2008;28:286–93. doi: 10.1016/j.indcrop.2008.03.009. [CrossRef]

Ullah R, Nadeem M, Khalique A, Imran M, Mehmood S, Javid A, Hussain J. Nutritional and therapeutic perspectives of Chia (Salvia hispanica L.): a review. J Food Sci Technol. 2015;1-9, [PMC free article] [PubMed]

Ixtaina VY, Martinez ML, Spotorno V, Mateo CM, Maestri DM, Diehl BWK, Nolasco SM, Tomas MC. Characterization of chia seed oils obtained by pressing and solvent extraction. J Food Compos Anal. 2011;24:166–74, [CrossRef] [Google Scholar]

Ixtaina VY, Vega A, Nolasco SM, Tomás MC, Gimeno M, Bárzana E, Tecante A. Supercritical carbon dioxide extraction of oil from Mexican chia seed (Salvia hispanica L.): Characterization and process optimization. J Supercrit Fluids. 2010;55:192–99, [CrossRef]

Jin F, Nieman DC, Sha W, Xie G, Qiu Y, Jia W. Supplementation of milled chia seeds increases plasma ALA and EPA in postmenopausal women. Plant Foods Hum Nutr. 2010;67:105–10, [PubMed] [CrossRef] [Google Scholar]

 

Guevara-Cruz M, Tovar AR, Aguilar-Salinas CA, Medina-Vera I, Gil-Zenteno L, Hernández-Viveros I, López-Romero P, Ordaz-Nava G, Canizales-Quinteros S, Guillen Pineda LE, Torres N. A dietary pattern including nopal, chia seed, soy protein, and oat reduces serum triglycerides and glucose intolerance in patients with metabolic syndrome. J Nutr. 2012;142:64–69, [PubMed

Ali MN, Yeap SK, Ho WY, Beh BK, Tan SW, Tan SG. The promising future of chia, Salvia hispanica L. J Biomed Biotechnol. 2012;171956. doi:10.1155/2012/171956. [PMC free article] [PubMed]

Arab-Tehrany E, Jacquot M, Gaiani C, Imran M, Desobry S, Linder M. Beneficial effects and oxidative stability of omega-3 long-chain polyunsaturated fatty acids. Trends Food Sci Tech. 2012;25:24–33, [CrossRef]

Marineli RS, Aguiar MÉ, Alves LS, Teixeira GA, Nogueira EM, Maróstica MR. Chemical characterization and antioxidant potential of Chilean chia seeds and oil (Salvia hispanica L.) LWT Food Sci Technol. 2014;59:1304–10, [CrossRef] [Google Scholar]

 

Weber CW, Gentry HS, Kohlhepp EA, McCrohan PR. The nutritional and chemical evaluation of Chia seeds. Ecol Food Nutr. 1991;26:119–25. doi: 10.1080/03670244.1991.9991195. [CrossRef] [Google Scholar]

 

Porras-Loaiza P, Jiménez-Munguía MT, Sosa-Morales ME, Palou E, López-Malo A. Physical properties, chemical characterization and fatty acid composition of Mexican chia (Salvia hispanica L.) seeds. Int J Food Sci Tech. 2014;49:571–77. doi: 10.1111/ijfs.12339. [CrossRef] [Google Scholar]

 

Bushway AA, Belyea PR, Bushway RJ. Chia seed as a source of oil, polysaccharide, and protein. J Food Sci. 1981;46:1349–50, [CrossRef] [Google Scholar]

 

Coates W, Ayerza R. Commercial production of Chia in northwestern Argentina. J Am Oil Chem Soc. 1998;75:1417–20, [CrossRef] [Google Scholar]

 

Ayerza R, Coates W. Composition of chia (Salvia hispanica) grown in six tropical and subtropical ecosystems of South America. Tropical Sci. 2004;44:131–35, [CrossRef] [Google Scholar]

 

Craig R, Sons M.  Application for approval of whole chia (Salvia hispanica L.) seed and ground whole chia as novel food ingredients. Advisory committee for novel foods and processes. Ireland: Company David Armstrong; 2004. pp. 1–29. [Google Scholar]

 

Reyes-Caudillo E, Tecante A, Valdivia-Lopez MA. The dietary fiber content and antioxidant activity of phenolic compounds in Mexican chia (Salvia hispanica L.) seeds. Food Chem. 2008;107:656–63, [CrossRef]

Ramana KV, Srivastava S, Singhal SS. Lipid peroxidation products in human health and disease. Oxid Med Cell Longev. 2013;2013:583438. doi: 10.1155/2013/583438. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

 

Spickett CM, Forman HJ.  Lipid oxidation in health and disease (oxidative stress and disease) USA: CRC Press; 2015. p. 440. [Google Scholar]

 

Kanner J. Dietary advanced lipid oxidation endproducts are risk factors for human health. Mol Nutr Food Res. 2007;51(9):1094–1101, [PubMed] [CrossRef] [Google Scholar]

 

Decker EA. Strategies for manipulating the prooxidative/antioxidative balance of foods to maximize oxidative stability. Trends Food Sci Tech. 1998;9:241–48, [CrossRef]

Ciftci ON, Przybylski R, Rudzińska M. Lipid components of flax, perilla, and chia seeds. Eur J Lipid Sci Tech. 2012;114:794–800, [CrossRef]

Kimura S, Tung YC, Pan MH, Su NW, Lai YJ, Cheng KC. Black garlic: A critical review of its production, bioactivity, and application. J Food Drug Anal. 2017 Jan;25(1):62-70, [PubMed PMID: 28911544]

Choi IS, Cha HS, Lee YS. Physicochemical and antioxidant properties of black garlic. Molecules. 2014 Oct 20;19(10):16811-23, [PubMed Central PMCID: PMC6270986]

Ha AW, Kim WK. Antioxidant mechanism of black garlic extract involving nuclear factor erythroid 2-like factor 2 pathway [published correction appears in Nutr Res Pract. 2017 Aug;11(4):347]. Nutr Res Pract. 2017;11(3):206–213, [NIH]

Ried K, Fakler P. Potential of garlic (Allium sativum) in lowering high blood pressure: mechanisms of action and clinical relevance. Integr Blood Press Control. 2014;7:71–82. Published 2014 Dec 9, [NIH]

Ried K, Frank OR, Stocks NP. Aged garlic extract reduces blood pressure in hypertensives: a dose-response trial. Eur J Clin Nutr. 2013;67(1):64–70. doi:10.1038/ejcn.2012.178 [NIH]

Gia-Buu Tran, Tan-Viet Pham, Ngoc-Nam Trinh, Black Garlic and Its Therapeutic Benefits, 

March 29th, 2019, DOI: 10.5772/intechopen.85042, [Intechopen

Slavin J. Fiber and prebiotics: mechanisms and health benefits. Nutrients. 2013;5(4):1417–1435. Published 2013 Apr 22, [NIH]

Santoso P, Amelia A, Rahayu R. Jicama (Pachyrhizus erosus) fiber prevents excessive blood glucose and body weight increase without affecting food intake in mice fed with a high-sugar diet. J Adv Vet Anim Res. 2019;6(2):222–230. Published 2019 Apr 18, [NIH]

Chatterjee A, Bhattacharya H, Kandwal A. Probiotics in periodontal health and disease. J Indian Soc Periodontol. 2011;15(1):23–28, [NIH]

Lipkowitz MS. Regulation of uric acid excretion by the kidney. Curr Rheumatol Rep. 2012 Apr;14(2):179-84, Review. [PubMed PMID: 22359229]

Dessein PH, Shipton EA, Stanwix AE, et al., Beneficial effects of weight loss associated with moderate calorie/carbohydrate restriction, and increased proportional intake of protein and unsaturated fat on serum urate and lipoprotein levels in gout: a pilot study,

Annals of the Rheumatic Diseases 2000;59:539-543 [BMJ]

Lewis AS, Murphy L, McCalla C, Fleary M, Purcell S. Inhibition of mammalian xanthine oxidase by folate compounds and amethopterin. J Biol Chem. 1984 Jan 10;259(1):12-5. [PubMed] PMID: 6608520

Spector T, Ferone R. Folic acid does not inactivate xanthine oxidase. J Biol Chem. 1984 Sep 10;259(17):10784-6. [PubMed] PMID: 6547955

Granger DN, McCord JM, Parks DA, Hollwarth ME. Xanthine oxidase inhibitors attenuate ischemia-induced vascular permeability changes in the cat intestine. Gastroenterology. 1986 Jan;90(1):80-4. [PubMed] PMID: 3753555

Dolin CD, Deierlein AL, Evans MI. Folic Acid Supplementation to Prevent Recurrent Neural Tube Defects: 4 Milligrams Is Too Much. Fetal Diagn Ther. 2018;44(3):161-165, Epub 2018 Aug 22. Review. [PubMed] PMID: 30134243

Patel KR, Sobczyńska-Malefora A. The adverse effects of an excessive folic acid intake. Eur J Clin Nutr. 2017 Feb;71(2):159-163. doi: 10.1038/ejcn.2016.194. Epub 2016 Oct 12. Review. [PubMed] PMID: 27731331

 

Miller PC, Bailey SP, Barnes ME, Derr SJ, Hall EE. The effects of protease supplementation on skeletal muscle function and DOMS following downhill running. J Sports Sci. 2004;22(4): 365-372.

 

Hale LP, Greer PK, Sempowski GD. Bromelain treatment alters leukocyte expression of cell surface molecules involved in cellular adhesion and activation. Clin Immunol. 2002;104(2): 183-190.

 

Desser L, Rehberger A, Paukovits W. Proteolytic enzymes and amylase induce cytokine production in human peripheral blood mononuclear cells in vitro. Cancer Biother. 1994;9(3): 253-263.

 

Edwards BJ, Perry HM, Kaiser FE, et al. Age-related changes in amylin secretion. Mech Ageing Dev. 1996;86(1):39-51.

 

DiMagno EP. Medical treatment of pancreatic insufficiency. Mayo Clin Proc. 1979;54(7):435-442.

 

Suarez F, Levitt MD, Adshead J, Barkin JS. Pancreatic supplements reduce the symptomatic response of healthy subjects to a high-fat meal. Dig Dis Sci. 1999;44(7):1317-1321.

 

Maurer HR. Bromelain: biochemistry, pharmacology, and medical use. Cell Mol Life Sci. 2001;58(9):1234-1245.

 

Kleine MW, Stauder GM, Beese EW. The intestinal absorption of orally administered hydrolytic enzymes and their effects in the treatment of acute herpes zoster as compared with those of oral acyclovir therapy. Phytomedicine. 1995;2(1):7-15.

 

Taussig SJ, Batkin S. Bromelain, the enzyme complex of pineapple (Ananas comosus) and its clinical application: an update. J Ethnopharmacol. 1988;22(2):191-203.

 

Lotz-Winter H. On the pharmacology of bromelain: an update with special regard to animal studies on dose-dependent effects. Planta Med. 1990;56(3):249-253.

 

Ito C, Yamaguchi K, Shibutani Y, et al. Anti-inflammatory actions of proteases, bromelain, trypsin, and their mixed preparation (author’s transl) [in Japanese]. Nihon Yakurigaku Zasshi. 1979;75(3):227-237.

 

Klein G, Kullich W, Schnitker J, Schwann H. Efficacy and tolerance of an oral enzyme combination in painful osteoarthritis of the hip: a double-blind, randomized study comparing oral enzymes with non-steroidal anti-inflammatory drugs. Clin Exp Rheumatol. 2006;24(1):25-30.

 

Akhtar NM, Naseer R, Farooqi AZ, Aziz W, Nazir M. Oral enzyme combination versus diclofenac in the treatment of osteoarthritis of the knee: a double-blind prospective randomized study. Clin Rheumatol. 2004;23(5):410-415.

 

Deitrick RE. Oral proteolytic enzymes in the treatment of athletic injuries: a double-blind study. Pa Med. 1965;68(10):35-37. 18. Stone MB, Merrick MA, Ingersoll CD, Edwards JE. Preliminary comparison of bromelain and ibuprofen for delayed onset muscle

soreness management. Clin J Sport Med. 2002;12(6):373-378.

Boylston, Terri & Vinderola, Celso & Ghoddusi, Hamid & Reinheimer, Jorge. (2004). Incorporation of bifidobacteria into cheeses: challenges and rewards. International Dairy Journal. 14. 375-387. 10.1016/j.idairyj.2003.08.008. [ResearchGate]

Daigle A, Roy D, Bélanger G, Vuillemard JC, Production of probiotic cheese (cheddar-like cheese) using enriched cream fermented by Bifidobacterium infantis, J Dairy Sci. 1999 Jun;82(6):1081-91, [JournalOfDairyScience]

Demers V, Naïmia S, Le Barza M, Pilonac G, Marettea A, Audyd J, Laurine E, Flissa I, St-Gelaisa D, Survival of New Probiotic Strains with Anti-Inflammatory & Anti-Obesity Effects Used in Non-Fat Yogurt and Low-Fat Cheddar Cheese Making, [Milkgenomics

Baron M., Roy D., Vuillemard J.C., Biochemical characteristics of fermented milk produced by mixed-cultures of lactic starters and bifidobacteria, Lait 80 (2000) 465-478 [EDP Sciences]

Charteris W.P., Kelly P.M., Morell L., Collins J.K., Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract, J. Appl. Microbiol. 84 (1998) 759-768 [CrossRef]

Gmeiner M., Kneifel W., Kulbe K.D., Wouters R., De Boever P., Nollet L., Verstraete W., Influence of a synbiotic mixture consisting of Lactobacillus acidophilus 74-2 and a fructooligosaccharide preparation on the microbial ecology sustained in a simulation of the human intestinal microbial ecosystem (SHIME reactor), Appl. Microbiol. Biotechnol. 53 (2000) 219-223 [CrossRef]

 

Gomes A.M.P., Malcata F.X., Bifidobacterium spp., Lactobacillus acidophilus: Biological, biochemical, technological, and therapeutical properties relevant for use as probiotics, Trends Food Sci. Technol. 10 (1999) 139-157 [CrossRef]

 

Holzapfel W.H., Haberer P., Snel J., Schillinger U., Huis in't Veld J.H., Overview of gut flora and probiotics, Int. J. Food Microbiol. 41 (1998) 85-101 [CrossRef]

 

Hung M.N., Lee B.H., Purification and characterization of a recombinant beta-galactosidase with transgalactosylation activity from Bifidobacterium infantis HL96, Appl. Microbiol. Biotechnol. 58 (2002) 439-445 [CrossRef]

Kirjavainen P.V., Ouwehand A.C., Isolauri E., Salminen S.J., The ability of probiotic bacteria to bind to human intestinal mucus, FEMS Microbiol. Lett. 167 (1998) 185-189 [CrossRef]

 

Klaenhammer T.R., Kullen M.J., Selection and design of probiotics, Int. J. Food Microbiol. 50 (1999) 45-57 [CrossRef]

Klein G., Pack A., Bonaparte C., Reute G., Taxonomy and physiology of probiotic lactic acid bacteria, Int. J. Food Microbiol. 41 (1998) 103-125 [CrossRef]

Lee Y.-K., Salminen S., The coming of age of probiotics, Trends Food Sci. Technol. 6 (1995) 241-245 [CrossRef]

Marteau P., Shanahan F., Basic aspects and pharmacology of probiotics: an overview of pharmacokinetics, mechanisms of action and side-effects, Best Pract. Res. Clin. Gastroenterol. 17 (2003) 725-740 [CrossRef]

 

Mattila-Sandholm T., Myllärinen P., Crittenden R., Mogensen G., Fondén R., Saarela M., Technological challenges for future probiotic foods, Int. Dairy J. 12 (2002) 173-182 [CrossRef]

Maus J.E., Ingham S.C., Employment of stressful conditions during culture production to enhance subsequent cold- and acid-tolerance of bifidobacteria, J. Appl. Microbiol. 95 (2003) 146-154 [CrossRef]

 

McBrearty S., Ross R.P., Fitzgerald G.F., Collins J.K., Wallace J.M., Stanton C., Influence of two commercially available bifidobacteria cultures on Cheddar cheese quality, Int. Dairy J. 11 (2001) 599-610 [CrossRef]

 

Ouwehand A.C., Isolauri E., Kirjavainen P.V., Salminen S.J., Adhesion of four Bifidobacterium strains to human intestinal mucus from subjects in different age groups, FEMS Microbiol. Lett. 172 (1999) 61-64 [CrossRef]

Reuter G., Klein G., Goldberg M., Identification of probiotic cultures in food samples, Food Res. Int. 35 (2002) 117-124 [CrossRef]

Riordan K.O., Fitzgerald G.F., Evaluation of bifidobacteria for the production of antimicrobial compounds and assessment of performance in cottage cheese at refrigeration temperature, J. Appl. Microbiol. 85 (1998) 103-114 [CrossRef]

Roy D., Media for the isolation and enumeration of bifidobacteria in dairy products, Int. J. Food Microbiol. 69 (2001) 167-182 [CrossRef]

 

Roy D., Ward P., Champagne G., Differentiation of bifidobacteria by use of pulsed-field gel electrophoresis and polymerase chain reaction, Int. J. Food Microbiol. 29 (1996) 11-29 [CrossRef]

 

Roy D., Mainville I., Mondou F., Selective enumeration and survival of bifidobacteria in fresh cheese, Int. Dairy J. 7 (1997) 785-793 [CrossRef].

 

Roy D., Daoudi L., Azaola A., Optimization of galactooligosaccharides production by Bifidobacterium infantis RW-8120 using response surface methodology, J. Ind. Microbiol. Biotechnol. 29 (2002) 281-285 [CrossRef]

Saarela M., Mogensen G., Fondén R., Matto J., Mattila-Sandholm T., Probiotic bacteria: safety, functional and technological properties, J. Biotechnol. 84 (2000) 197-215 [CrossRef]

Saarela M., Rantala M., Hallamaa K., Nohynek L., Virkajarvi I., Matto J., Stationary-phase acid and heat treatments for improvement of the viability of probiotic lactobacilli and bifidobacteria, J. Appl. Microbiol. 96 (2004) 1205-1214 [CrossRef]

 

Saxelin M., Grenov B., Svensson U., Fondén R., Reniero R.M., Mattila-Sandholm T., The technology of probiotics, Trends Food Sci. Technol. 10 (1999) 387-392 [CrossRef]

Silva A.M., Barbosa F.H., Duarte R., Vieira L.Q., Arantes R.M., Nicoli J.R., Effect of Bifidobacterium longum ingestion on experimental salmonellosis in mice, J. Appl. Microbiol. 97 (2004) 29-37 [CrossRef]

 

Stanton C., Gardiner G., Lynch P.B., Collins J.K., Fitzgerald G., Ross R.P., Probiotic cheese, Int. Dairy J. 8 (1998) 491-496 [CrossRef].

 

Sun W., Griffiths M.W., Survival of bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan-xanthan beads, Int. J. Food Microbiol. 61 (2000) 17-25 [CrossRef]

 

Tamime A.Y., Fermented milk: a historical food with modern applications - a review, Eur. J. Clin. Nutr. 56 (2002) S2-S15 [CrossRef].

 

Yilmaztekin M., Ozer B.H., Atasoy F., Survival of Lactobacillus acidophilus LA-5 and Bifidobacterium bifidum BB-02 in white-brined cheese, Int. J. Food Sci. Nutr. 55 (2004) 53-60 [CrossRef]

Ziemer C.J., Gibson G.R., An overview of probiotics, prebiotics and synbiotics in the functional food concept: Perspectives and future strategies, Int. Dairy J. 8 (1998) 473-479 [CrossRef]

 

PEMFT, Pulsed Electro-Magnetic Field Therapy

Goodwin TJ, Johnson LB. (2003). Physiological and molecular genetic effects of time-varying electromagnetic fields on human neuronal cells. NASA/TP-2003-212054 Retrieved from: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20030075722.pdf

Zou J, Chen Y, Qian J, Yang H. Effect of a low-frequency pulsed electromagnetic field on expression and secretion of IL-1beta and TNFalpha in nucleus pulposus cells. J Int Med Res. 2017;45:462–470.[PMC free article] [PubMed] [Google Scholar]

Miller SL, Coughlin DG, Waldorff EI, Ryaby JT, Lotz JC. Pulsed electromagnetic field (PEMF) treatment reduces the expression of genes associated with disc degeneration in human intervertebral disc cells. Spine J. 2016;16:770–776. [PubMed] [Google Scholar]

Lencel P, Delplace S, Pilet P, Leterme D, Miellot F, Sourice S, Caudrillier A, Hardouin P, Guicheux J, Magne D. Cell-specific effects of TNF-alpha and IL-1beta on alkaline phosphatase: implication for syndesmophyte formation and vascular calcification. Lab Invest. 2011;91:1434–1442. [PubMed] [Google Scholar]​

 

Falone S, Marchesi N, Osera C, Fassina L, Comincini S, Amadio M, Pascale A. Pulsed electromagnetic field (PEMF) prevents pro-oxidant effects of H2O2 in SK-N-BE(2) human neuroblastoma cells. Int J Radiat Biol. 2016;92:281–286. [PubMed] [Google Scholar]

 

Iannitti T, Fistetto G, Esposito A, Rottigni V, Palmieri B. Pulsed electromagnetic field therapy for the management of osteoarthritis-related pain, stiffness and physical function: clinical experience in the elderly. Clin Interv Aging. 2013;8:1289–1293. [PMC free article] [PubMed] [Google Scholar]​​​​

Vadala M, Vallelunga A, Palmieri L, Palmieri B, Morales-Medina JC, Iannitti T. Mechanisms and therapeutic applications of electromagnetic therapy in Parkinson’s disease. Behav Brain Funct. 2015;11:26.[PMC free article] [PubMed] [Google Scholar]

Ryang We S, Koog YH, Jeong KI, Wi H. Effects of pulsed electromagnetic field on knee osteoarthritis: a systematic review. Rheumatology (Oxford) 2013;52:815–824. [PubMed] [Google Scholar]

Strauch B, Herman C, Dabb R, Ignarro LJ, Pilla AA. Evidence-based use of pulsed electromagnetic field therapy in clinical plastic surgery. Aesthet Surg J. 2009;29:135–143. [PubMed] [Google Scholar]

 

Cebrian JL, Gallego P, Frances A, Sanchez P, Manrique E, Marco F, Lopez-Duran L. Comparative study of the use of electromagnetic fields in patients with pseudoarthrosis of tibia treated by intramedullary nailing. Int Orthop. 2010;34:437–440. [PMC free article] [PubMed] [Google Scholar]

 

Jing D, Cai J, Shen G, Huang J, Li F, Li J, Lu L, Luo E, Xu Q. The preventive effects of pulsed electromagnetic fields on diabetic bone loss in streptozotocin-treated rats. Osteoporos Int. 2011;22:1885–1895. [PubMed] [Google Scholar]

 

Pan Y, Dong Y, Hou W, Ji Z, Zhi K, Yin Z, Wen H, Chen Y. Effects of PEMF on microcirculation and angiogenesis in a model of acute hindlimb ischemia in diabetic rats. Bioelectromagnetics. 2013;34:180–188. [PubMed] [Google Scholar]

 

Weintraub MI, Herrmann DN, Smith AG, Backonja MM, Cole SP. Pulsed electromagnetic fields to reduce diabetic neuropathic pain and stimulate neuronal repair: a randomized controlled trial. Arch Phys Med Rehabil. 2009;90:1102–1109. [PubMed] [Google Scholar]

 

Canedo-Dorantes L, Garcia-Cantu R, Barrera R, Mendez-Ramirez I, Navarro VH, Serrano G. Healing of chronic arterial and venous leg ulcers through systemic effects of electromagnetic fields. Arch Med Res. 2002;33:281–289. [PubMed] [Google Scholar]

 

Roland D, Ferder M, Kothuru R, Faierman T, Strauch B. Effects of pulsed magnetic energy on a microsurgically transferred vessel. Plast Reconstr Surg. 2000;105:1371–1374. [PubMed] [Google Scholar]

 

Goudarzi I, Hajizadeh S, Salmani ME, Abrari K. Pulsed electromagnetic fields accelerate wound healing in the skin of diabetic rats. Bioelectromagnetics. 2010;31:318–323. [PubMed] [Google Scholar]

 

Heden P, Pilla AA. Effects of pulsed electromagnetic fields on postoperative pain: a double-blind randomized pilot study in breast augmentation patients. Aesthetic Plast Surg. 2008;32:660–666. [PubMed] [Google Scholar]

 

Varani K, Vincenzi F, Targa M, Corciulo C, Fini M, Setti S, Cadossi R, Borea PA. Effect of pulsed electromagnetic field exposure on adenosine receptors in rat brain. Bioelectromagnetics. 2012;33:279–287.[PubMed] [Google Scholar]

 

van Bergen CJ, Blankevoort L, de Haan RJ, Sierevelt IN, Meuffels DE, d’Hooghe PR, Krips R, van Damme G, van Dijk CN. Pulsed electromagnetic fields after arthroscopic treatment for osteochondral defects of the talus: a double-blind randomized controlled multicenter trial. BMC Musculoskelet Disord. 2009;10:83. [PMC free article] [PubMed] [Google Scholar]

 

Hannemann PF, van Wezenbeek MR, Kolkman KA, Twiss EL, Berghmans CH, Dirven PA, Brink PR, Poeze M. CT scan-evaluated outcome of pulsed electromagnetic fields in the treatment of acute scaphoid fractures: a randomized, multicentre, double-blind, placebo-controlled trial. Bone Joint J. 2014;96-B:1070–1076. [PubMed] [Google Scholar]

 

Ongaro A, Pellati A, Bagheri L, Fortini C, Setti S, De Mattei M. Pulsed electromagnetic fields stimulate osteogenic differentiation in the human bone marrow and adipose tissue-derived mesenchymal stem cells. Bioelectromagnetics. 2014;35:426–436. [PubMed] [Google Scholar]

 

Benazzo F, Cadossi M, Cavani F, Fini M, Giavaresi G, Setti S, Cadossi R, Giardino R. Cartilage repair with osteochondral autografts in sheep: effect of biophysical stimulation with pulsed electromagnetic fields. J Orthop Res. 2008;26:631–642. [PubMed] [Google Scholar]

 

de Girolamo L, Vigano M, Galliera E, Stanco D, Setti S, Marazzi MG, Thiebat G, Corsi Romanelli MM, Sansone V. In vitro functional response of human tendon cells to different dosages of a low-frequency pulsed electromagnetic field. Knee Surg Sports Traumatol Arthrosc. 2015;23:3443–3453. [PubMed] [Google Scholar]

 

Veronesi F, Fini M, Giavaresi G, Ongaro A, De Mattei M, Pellati A, Setti S, Tschon M. Experimentally induced cartilage degeneration treated by pulsed electromagnetic field stimulation; an in vitro study on bovine cartilage. BMC Musculoskelet Disord. 2015;16:308. [PMC free article] [PubMed] [Google Scholar]

 

Wuschech H, von Hehn U, Mikus E, Funk RH. Effects of PEMF on patients with osteoarthritis: results of a prospective, placebo-controlled, double-blind study. Bioelectromagnetics. 2015;36:576–585.[PubMed] [Google Scholar]

 

Rohde J. Die Gelenkschule. Manuelle Medizin. 2003;3:189–198. [Google Scholar]

37. Weintraub MI, Cole SP. A randomized controlled trial of the effects of a combination of static and dynamic magnetic fields on carpal tunnel syndrome. Pain Med. 2008;9:493–504. [PubMed] [Google Scholar]

 

Graak V, Chaudhary S, Bal BS, Sandhu JS. Evaluation of the efficacy of pulsed electromagnetic field in the management of patients with diabetic polyneuropathy. Int J Diabetes Dev Ctries. 2009;29:56–61.[PMC free article] [PubMed] [Google Scholar]

 

Ozguclu E, Cetin A, Cetin M, Calp E. Additional effect of pulsed electromagnetic field therapy on knee osteoarthritis treatment: a randomized, placebo-controlled study. Clin Rheumatol. 2010;29:927–931.[PubMed] [Google Scholar]

 

Omar AS, Awadalla MA, El-Latif MA. Evaluation of pulsed electromagnetic field therapy in the management of patients with discogenic lumbar radiculopathy. Int J Rheum Dis. 2012;15:e101–108.[PubMed] [Google Scholar]

Otter MW, McLeod KJ, Rubin CT. Effects of electromagnetic fields in experimental fracture repair. Clin Orthop Relat Res. 1998:S90–104. [PubMed] [Google Scholar]

Chang WH, Chen LT, Sun JS, Lin FH. Effect of pulse-burst electromagnetic field stimulation on osteoblast cell activities. Bioelectromagnetics. 2004;25:457–465. [PubMed] [Google Scholar]

 

Ferroni L, Tocco I, De Pieri A, Menarin M, Fermi E, Piattelli A, Gardin C, Zavan B. Pulsed magnetic therapy increases

osteogenic differentiation of mesenchymal stem cells only if they are pre-committed. Life Sci. 2016;152:44–51. [PubMed] [Google Scholar]

 

Zhai M, Jing D, Tong S, Wu Y, Wang P, Zeng Z, Shen G, Wang X, Xu Q, Luo E. Pulsed electromagnetic fields promote in vitro osteoblastogenesis through a Wnt/beta-catenin signaling associated mechanism. Bioelectromagnetics. 2016 [Epub ahead of print] [PubMed] [Google Scholar]

 

Veronesi F, Torricelli P, Giavaresi G, Sartori M, Cavani F, Setti S, Cadossi M, Ongaro A, Fini M. In vivo effect of two different pulsed electromagnetic field frequencies on osteoarthritis. J Orthop Res. 2014;32:677–685. [PubMed] [Google Scholar]

 

De Mattei M, Caruso A, Pezzetti F, Pellati A, Stabellini G, Sollazzo V, Traina GC. Effects of pulsed electromagnetic fields on human articular chondrocyte proliferation. Connect Tissue Res. 2001;42:269–279. [PubMed] [Google Scholar]

 

De Mattei M, Fini M, Setti S, Ongaro A, Gemmati D, Stabellini G, Pellati A, Caruso A. Proteoglycan synthesis in bovine articular cartilage explants exposed to different low-frequency low-energy pulsed electromagnetic fields. Osteoarthritis Cartilage. 2007;15:163–168. [PubMed] [Google Scholar]

 

De Mattei M, Pasello M, Pellati A, Stabellini G, Massari L, Gemmati D, Caruso A. Effects of electromagnetic fields on proteoglycan metabolism of bovine articular cartilage explants. Connect Tissue Res. 2003;44:154–159. [PubMed] [Google Scholar]

 

Ciombor DM, Aaron RK, Wang S, Simon B. Modification of osteoarthritis by pulsed electromagnetic field--a morphological study. Osteoarthritis Cartilage. 2003;11:455–462. [PubMed] [Google Scholar]

 

Fini M, Giavaresi G, Torricelli P, Cavani F, Setti S, Cane V, Giardino R. Pulsed electromagnetic fields reduce knee osteoarthritic lesion progression in the aged Dunkin Hartley guinea pig. J Orthop Res. 2005;23:899–908. [PubMed] [Google Scholar]

 

Fini M, Torricelli P, Giavaresi G, Aldini NN, Cavani F, Setti S, Nicolini A, Carpi A, Giardino R. Effect of pulsed electromagnetic field stimulation on knee cartilage, subchondral and epiphyseal trabecular bone of aged Dunkin Hartley guinea pigs. Biomed Pharmacother. 2008;62:709–715. [PubMed] [Google Scholar]

 

Nicolin V, Ponti C, Baldini G, Gibellini D, Bortul R, Zweyer M, Martinelli B, Narducci P. In vitro exposure of human chondrocytes to pulsed electromagnetic fields. Eur J Histochem. 2007;51:203–212.[PubMed] [Google Scholar]

 

Ongaro A, Pellati A, Masieri FF, Caruso A, Setti S, Cadossi R, Biscione R, Massari L, Fini M, De Mattei M. Chondroprotective effects of pulsed electromagnetic fields on human cartilage explants. Bioelectromagnetics. 2011;32:543–551. [PubMed] [Google Scholar]

 

Tepper OM, Callaghan MJ, Chang EI, Galiano RD, Bhatt KA, Baharestani S, Gan J, Simon B, Hopper RA, Levine JP, Gurtner GC. Electromagnetic fields increase in vitro and in vivo angiogenesis through endothelial release of FGF-2. FASEB J. 2004;18:1231–1233. [PubMed] [Google Scholar]

 

de Girolamo L, Stanco D, Galliera E, Vigano M, Colombini A, Setti S, Vianello E, Corsi Romanelli MM, Sansone V. Low frequency pulsed electromagnetic field affects proliferation, tissue-specific gene expression, and cytokines release of human tendon cells. Cell Biochem Biophys. 2013;66:697–708.[PubMed] [Google Scholar]

 

Miyagi N, Sato K, Rong Y, Yamamura S, Katagiri H, Kobayashi K, Iwata H. Effects of PEMF on a murine osteosarcoma cell line: drug-resistant (P-glycoprotein-positive) and non-resistant cells. Bioelectromagnetics. 2000;21:112–121. [PubMed] [Google Scholar]

 

Li JK, Lin JC, Liu HC, Sun JS, Ruaan RC, Shih C, Chang WH. Comparison of ultrasound and electromagnetic field effects on osteoblast growth. Ultrasound Med Biol. 2006;32:769–775. [PubMed] [Google Scholar]

 

Lohmann C, Boyan B, Simon B, Schwartz Z. Pulsed electromagnetic fields have direct effects on growth plate chondrocytes. Osteologie. 2005;14:769–775. [Google Scholar]

 

Diniz P, Soejima K, Ito G. Nitric oxide mediates the effects of pulsed electromagnetic field stimulation on osteoblast proliferation and differentiation. Nitric Oxide. 2002;7:18–23. [PubMed] [Google Scholar]

Boopalan PR, Arumugam S, Livingston A, Mohanty M, Chittaranjan S. Pulsed electromagnetic field therapy results in healing of full-thickness articular cartilage defect. Int Orthop. 2011;35:143–148.[PMC free article] [PubMed] [Google Scholar]

Caliskan SG, Bilgin MD, Kozaci LD. Effect of pulsed electromagnetic field on MMP-9 and TIMP-1 levels in chondrosarcoma cells stimulated with IL-1beta. Asian Pac J Cancer Prev. 2015;16:2701–2705.[PubMed] [Google Scholar]

 

Tang X, Alliston T, Coughlin D, Miller S, Zhang N, Waldorff EI, Ryaby JT, Lotz JC. Dynamic imaging demonstrates that pulsed electromagnetic fields (PEMF) suppress IL-6 transcription in bovine nucleus pulposus cells. J Orthop Res. 2018;36:778–787. [PMC free article] [PubMed] [Google Scholar]

 

Becker RO.  The body electric: electromagnetism and the foundation of life. New York: William Morrow and Company; 1985.  [Google Scholar]

Adey WR. Electromagnetics in biology and medicine. In: Matsumoto H, editor. Modern radio science.Oxford: Oxford University Press; 1993.  [Google Scholar]

Byus CV, Pieper SE, Adey WR. The effects of low-energy 60-Hz environmental electromagnetic fields upon the growth-related enzyme ornithine decarboxylase. Carcinogenesis. 1987;8:1385–1389. [PubMed] [Google Scholar]

 

Walleczek J. Immune cell interactions with extremely low-frequency magnetic fields: experimental verification and free radical mechanisms. In: Frey AH, editor. On the nature of electromagnetic field interactions with biological systems. Austin TX: RG Landes; 1994. pp. 167–180. [Google Scholar]

Fitzsimmons RJ, Baylink DJ. Growth factors and electromagnetic fields in the bone. Clin Plast Surg. 1994;21:401–406. [PubMed] [Google Scholar]

Ehnert S, Fentz AK, Schreiner A, Birk J, Wilbrand B, Ziegler P, Reumann MK, Wang H, Falldorf K, Nussler AK. Extremely low frequency pulsed electromagnetic fields cause antioxidative defense mechanisms in human osteoblasts via induction of *O2(-) and H2O2. Sci Rep. 2017;7:14544.[PMC free article] [PubMed] [Google Scholar]

 

Pall ML. Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects. J Cell Mol Med. 2013;17:958–965. [PMC free article] [PubMed] [Google Scholar]

 

Lisi A, Ledda M, Rosola E, Pozzi D, D’Emilia E, Giuliani L, Foletti A, Modesti A, Morris SJ, Grimaldi S. Extremely low-frequency electromagnetic field exposure promotes differentiation of pituitary corticotrope-derived AtT20 D16V cells. Bioelectromagnetics. 2006;27:641–651. [PubMed] [Google Scholar]

 

Hojevik P, Sandblom J, Galt S, Hamnerius Y. Ca2+ ion transport through patch-clamped cells exposed to magnetic fields. Bioelectromagnetics. 1995;16:33–40. [PubMed] [Google Scholar]

 

Barbier E, Dufy B, Veyret B. Stimulation of Ca2+ influx in rat pituitary cells under exposure to a 50 Hz magnetic field. Bioelectromagnetics. 1996;17:303–311. [PubMed] [Google Scholar]

Keczan E, Keri G, Banhegyi G, Stiller I. Effect of pulsed electromagnetic fields on endoplasmic reticulum stress. J Physiol Pharmacol. 2016;67:769–775. [PubMed] [Google Scholar]

 Akan Z, Aksu B, Tulunay A, Bilsel S, Inhan-Garip A. Extremely low-frequency electromagnetic fields affect the immune response of monocyte-derived macrophages to pathogens. Bioelectromagnetics. 2010;31(8):603–612. [PubMed] [Google Scholar]

 

Harper WL, Schmidt WK, Kubat NJ, Isenberg RA. An open-label pilot study of pulsed electromagnetic field therapy in the treatment of failed back surgery syndrome pain. Int Med Case Rep J. 2015;8:13–22.[PMC free article] [PubMed] [Google Scholar]

 

Hedén P, Pilla AA. Effects of pulsed electromagnetic fields on postoperative pain: a double-blind randomized pilot study in breast augmentation patients. Aesthetic Plast Surg. 2008;32(4):660–666.[PubMed] [Google Scholar]

 

Rawe IM, Lowenstein A, Barcelo CR, Genecov DG. Control of postoperative pain with a wearable continuously operating pulsed radiofrequency energy device: a preliminary study. Aesthetic Plast Surg. 2012;36(2):458–463. [PubMed] [Google Scholar]

 

Rohde C, Chiang A, Adipoju O, Casper D, Pilla AA. Effects of pulsed electromagnetic fields on interleukin-1 beta and postoperative pain: a double-blind, placebo-controlled, pilot study in breast reduction patients. Plast Reconstr Surg. 2010;125(6):1620–1629. [PubMed] [Google Scholar]

 

Selvam R, Ganesan K, Narayana Raju KV, Gangadharan AC, Manohar BM, Puvanakrishnan R. Low frequency and low intensity pulsed electromagnetic field exerts its antiinflammatory effect through the restoration of plasma membrane calcium ATPase activity. Life Sci. 2007;80(26):2403–2410. [PubMed] [Google Scholar]

 

Markov M, Nindl G, Hazelwood C, Cuppen J. Interactions between electromagnetic fields and the immune system: a possible mechanism for pain control. In: Ayrapetyan SN, Markov MS, editors. Bioelectromagnetics Current Concepts. Dordrecht: Springer; 2006. pp. 213–225. [Google Scholar]

Pilla AA, Muehsam DJ, Markov MS, Sisken BF. EMF signals and ion/ligand binding kinetics: prediction of bio effective waveform parameters. Bioelectrochem Bioenerg. 1999;48(1):27–34. [PubMed] [Google Scholar]

 

Ross CL, Harrison BS. Effect of pulsed electromagnetic field on inflammatory pathway markers in RAW 264.7 murine macrophages. J Inflamm Res. 2013;6:45–51. [PMC free article] [PubMed] [Google Scholar]

 

Ross CL, Harrison BS. Effect of time-varied magnetic field on inflammatory response in macrophage cell line RAW 264.7. Electromagn Biol Med. 2013;32(1):59–69. [PubMed] [Google Scholar]

 

He YL, Liu DD, Fang YJ, Zhan XQ, Yao JJ, Mei YA. Exposure to extremely low-frequency electromagnetic fields modulates Na+ currents in rat cerebellar granule cells through an increase of AA/PGE2 and EP receptor-mediated cAMP/PKA pathway. PLoS One. 2013;8(1):e54376. [PMC free article][PubMed] [Google Scholar]

 

Pilla AA. Nonthermal electromagnetic fields: from the first messenger to therapeutic applications. Electromagn Biol Med. 2013;32(2):123–136. [PubMed] [Google Scholar]

 

US, Ultra-Sound

Peng‐fei Yang, Dong Li, Shi‐mo Zhang, Qing Wu, Jin Tang, Liang‐Ku Huang, Wei Liu, Xi‐dong Xu, Shi‐rong Chen, Efficacy of ultrasound in the treatment of osteoarthritis of the knee, 25 July 2011, [https://doi.org/10.1111/j.1757-7861.2011.00144.x]

Srbely JZ. Ultrasound in the management of osteoarthritis: part I: a review of the current literature. J Can Chiropr Assoc. 2008;52(1):30–37, [NIH]

Barnett SB, Kossoff G, Edwards MJ. Is diagnostic ultrasound safe? Current international consensus on the thermal mechanism. Med J Aust. 1994 Jan 3;160(1):33–37. [PubMed] [Google Scholar]

 

Barnett SB, ter Haar GR, Ziskin MC, Nyborg WL, Maeda K, Bang J. Current status of research on biophysical effects of ultrasound. Ultrasound Med Biol. 1994;20(3):205–218. [PubMed] [Google Scholar]

 

Dalecki D. Mechanical bioeffects of ultrasound. Annu Rev Biomed Eng. 2004;6:229–248. [PubMed] [Google Scholar]

 

Nyborg WL. Biological effects of ultrasound: development of safety guidelines. Part I: personal histories. Ultrasound Med Biol. 2000 Jul;26(6):911–964. [PubMed] [Google Scholar]

 

Welch V, Brosseau L, Peterson J, Shea B, Tugwell P, Wells G. Therapeutic ultrasound for osteoarthritis of the knee. Cochrane Database Syst, [PubMed] [Google Scholar]

 

Svarcova J, Trnavsky K, Zvarova J. The influence of ultrasound, galvanic currents and shortwave diathermy on pain intensity in patients with osteoarthritis. Scand J Rheumatol Suppl. 1987;67:83–85.[PubMed] [Google Scholar]

 

Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials. 1996 Feb;17(1):1–12.[PubMed] [Google Scholar]

 

Falconer J, Hayes KW, Chang RW. Therapeutic ultrasound in the treatment of musculoskeletal conditions. Arthritis Care Res. 1990 Jun;3(2):85–91. [PubMed] [Google Scholar]

 

Kladny B. [Physical therapy of osteoarthritis] Z Rheumatol. 2005 Oct;64(7):448–455. [PubMed] [Google Scholar]

 

Puett DW, Griffin MR. Published trials of nonmedicinal and noninvasive therapies for hip and knee osteoarthritis. Ann Intern Med. 1994 Jul 15;121(2):133–140. [PubMed] [Google Scholar]

 

Philadelphia Panel. Philadelphia Panel evidence-based clinical practice guidelines on selected rehabilitation interventions for knee pain. Phys Ther. 2001 Oct;81(10):1675–1700. [PubMed] [Google Scholar]

 

Falconer J, Hayes KW, Chang RW. Effect of ultrasound on mobility in osteoarthritis of the knee. A randomized clinical trial. Arthritis Care Res JT – Arthritis care and research. the official journal of the Arthritis Health Professions Association. 1992 Mar;5(1):29–35. [PubMed] [Google Scholar]

 

Choi BH, Woo JI, Min BH, Park SR. Low-intensity ultrasound stimulates the viability and matrix gene expression of human articular chondrocytes in alginate bead culture. J Biomed Mater Res A. 2006 Dec 15;79(4):858–864. [PubMed] [Google Scholar]

 

Min BH, Woo JI, Cho HS, Choi BH, Park SJ, Choi MJ, et al. Effects of low-intensity ultrasound (LIUS) stimulation on human cartilage explants. Scand J Rheumatol. 2006 Jul;35(4):305–311. [PubMed] [Google Scholar]

 

Huang MH, Lin YS, Lee CL, Yang RC. Use of ultrasound to increase the effectiveness of isokinetic exercise for knee osteoarthritis. Arch Phys Med Rehabil. 2005 Aug;86(8):1545–1551. [PubMed] [Google Scholar]

 

Huang MH, Yang RC, Lee CL, Chen TW, Wang MC. Preliminary results of integrated therapy for patients with knee osteoarthritis. Arthritis Rheum. 2005 Dec 15;53(6):812–820. [PubMed] [Google Scholar]

 

Park SR, Jang KW, Park SH, Cho HS, Jin CZ, Choi MJ, et al. The effect of sonication on simulated osteoarthritis. Part I: effects of 1 MHz ultrasound on uptake of hyaluronan into the rabbit synovium. Ultrasound Med Biol JT – Ultrasound in medicine & biology. 2005 Nov;31(11):1551–1558. [PubMed] [Google Scholar]

 

Park SR, Park SH, Jang KW, Cho HS, Cui JH, An HJ, et al. The effect of sonication on simulated osteoarthritis. Part II: alleviation of osteoarthritis pathogenesis by 1 MHz ultrasound with simultaneous hyaluronate injection. Ultrasound Med Biol JT – Ultrasound in medicine & biology. 2005 Nov;31(11):1559–1566. [PubMed] [Google Scholar]

 

Kozanoglu E, Basaran S, Guzel R, Guler-Uysal F. Short term efficacy of ibuprofen phonophoresis versus continuous ultrasound therapy in knee osteoarthritis. Swiss Med Wkly. 2003 Jun 14;133(23–24):333–338. [PubMed] [Google Scholar]

 

Bansil CK, Joshi JB. Effectiveness of shortwave diathermy and ultrasound in the treatment of osteoarthritis of the knee joint. Med J Zambia. 1975 Oct;9(5):138–139. [PubMed] [Google Scholar]

 

Webster DF, Harvey W, Dyson M, Pond JB. The role of ultrasound-induced cavitation in the ‘in vitro’ stimulation of collagen synthesis in human fibroblasts. Ultrasonics. 1980 Jan;18(1):33–37. [PubMed] [Google Scholar]

 

Young SR, Dyson M. Effect of therapeutic ultrasound on the healing of full-thickness excised skin lesions. Ultrasonics. 1990 May;28(3):175–180. [PubMed] [Google Scholar]

 

Young SR, Dyson M. The effect of therapeutic ultrasound on angiogenesis. Ultrasound Med Biol. 1990;16(3):261–269. [PubMed] [Google Scholar]

 

Byl NN, McKenzie AL, West JM, Whitney JD, Hunt TK, Scheuenstuhl HA. Low-dose ultrasound effects on wound healing: a controlled study with Yucatan pigs. Arch Phys Med Rehabil. 1992 Jul;73(7):656–664. [PubMed] [Google Scholar]

 

Byl NN, McKenzie A, Wong T, West J, Hunt TK. Incisional wound healing: a controlled study of low and high dose ultrasound. J Orthop Sports Phys Ther. 1993 Nov;18(5):619–628. [PubMed] [Google Scholar]

 

da Cunha A, Parizotto NA, Vidal BC. The effect of therapeutic ultrasound on the repair of the Achilles tendon (tendo calcaneus) of the rat. Ultrasound Med Biol. 2001 Dec;27(12):1691–1696. [PubMed] [Google Scholar]

 

Demir H, Menku P, Kirnap M, Calis M, Ikizceli I. Comparison of the effects of laser, ultrasound, and combined laser + ultrasound treatments in experimental tendon healing. Lasers Surg Med. 2004;35(1):84–89. [PubMed] [Google Scholar]

 

Nyborg WL. Optimization of exposure conditions for medical ultrasound. Ultrasound Med Biol. 1985 Mar;11(2):245–260. [PubMed] [Google Scholar]

 

Robertson VJ. Dosage and treatment response in randomized clinical trials of therapeutic ultrasound. Physical Therapy in Sport. 2002;3:124–133. [Google Scholar]

David T. Tzou, Manint Usawachintachit, Kazumi Taguchi, Thomas Chi, 1 Apr 2017, Ultrasound Use in Urinary Stones: Adapting Old Technology for a Modern-Day Disease,  Journal of Endourology 2017 31:S1, S-89-S-94, [https://doi.org/10.1089/end.2016.0584]

Harper JD, Cunitz BW, Dunmire B, et al. First in human clinical trial of ultrasonic propulsion of kidney stones. J Urol 2016;195:956–964.[Crossref], [Medline], [Google Scholar]

Lingeman JE, McAteer JA, Gnessin E, Evan AP. Shock wave lithotripsy: advances in technology and technique. Nat Rev Urol. 2009;6(12):660–670, [NIH]

Jessica C. Dai, Michael R. Bailey, Mathew D. Sorensen, Jonathan D. Harper, Innovations in Ultrasound Technology in the Management of Kidney Stones, Urol Clin North Am. 2019 May; 46(2): 273–285.  Published online 2019 Mar 4, [NIH]

Zwaschka TA, Ahn JS, Cunitz BW, Bailey MR, Dunmire B, Sorensen MD, Harper JD, Maxwell AD. Combined Burst Wave Lithotripsy and Ultrasonic Propulsion for Improved Urinary Stone Fragmentation. J Endourol. 2018 Apr;32(4):344-349, Epub 2018 Mar 20. PubMed PMID: 29433329; PubMed Central PMCID: PMC5909083. [NIH]

May PC, Bailey MR, Harper JD. Ultrasonic propulsion of kidney stones. Curr Opin Urol. 2016 May;26(3):264-70, Review. PubMed PMID: 26845428; PubMed Central PMCID: PMC4821680, [NIH]

Lee SM, Collin N, Wiseman H, Philip J. Optimisation of shock wave lithotripsy: a systematic review of technical aspects to improve outcomes. Transl Androl Urol. 2019;8(Suppl 4):S389–S397. doi:10.21037/tau.2019.06.07, [NIH]

 

Cupping & Wet Cupping

Nafisa K. Umar, Sherali Tursunbadalov, Serdar Surgun, Menizibeya O. Welcome, Senol Dane, The Effects of Wet Cupping Therapy on the Blood Levels of Some Heavy Metals: A Pilot Study, Journal of Acupuncture and Meridian Studies, Volume 11, Issue 6, 2018, Pages 375-379, ISSN 2005-2901,[ScienceDirect]

Cohen J.,  A Brief History of Bloodletting,  [History.com], (Aug 29, 2018)

Anderson J., Barne  E., Shackleton E., The Art of Medicine: Over 2,000 Years of Images and Imagination, ISBN 978-0226749365, The Ilex Press Limited, 2013.

Seigworth G. R.,  Bloodletting Over the Centuries, Red Gold, the Epic Study of Blood, InternetArchive. Archived from the original on July 5, 2007.

 

TENS

Smellie A, The Daily Mail On Sunday, Can a few AA batteries relieve pain, gout, and depression? The answer will shock you. [DailyMail]

Teoli D, An J. Transcutaneous Electrical Nerve Stimulation (TENS) [Updated 2019 Nov 10]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2019 Jan, [NIH]

Levy A, Dalith M, Abramovici A, Pinkhas J, Weinberger A. Transcutaneous electrical nerve stimulation in experimental acute arthritis. Arch Phys Med Rehabil. 1987 Feb;68(2):75-8. [PubMed] PMID: 3492984

Grazio S, Grubisić F, Jajić Z. [Comparison of standard and acupuncture methods of transcutaneous electric nerve stimulation (TENS) in patients with rheumatoid arthritis]. Reumatizam. 2003;50(1):18-22. Croatian. [PubMed] PMID: 15072038

Francis, J. and Dingley, J. (2015), Electroanaesthesia – from torpedo fish to TENS. Anesthesia, 70: 93-103, referring to; Kuhfeld E, Return With Us NowTo Those Shocking Days of Yesteryear ..., [Med-Lec]

Kasat V, Gupta A, Ladda R, Kathariya M, Saluja H, Farooqui AA. Transcutaneous electric nerve stimulation (TENS) in dentistry- A review. J Clin Exp Dent. 2014 Dec;6(5):e562-8. [PMC free article] [PubMed]

 

Slavin KV. History of peripheral nerve stimulation. Prog Neurol Surg. 2011;24:1-15. [PubMed]

Johnson MI, Jones G. Transcutaneous electrical nerve stimulation: current status of evidence. Pain Manag. 2017 Jan;7(1):1-4. [PubMed]

Gibson W, Wand BM, O'Connell NE. Transcutaneous electrical nerve stimulation (TENS) for neuropathic pain in adults. Cochrane Database Syst Rev. 2017 Sep 14;9:CD011976. [PMC free article] [PubMed]

Sluka KA, Walsh D. Transcutaneous electrical nerve stimulation: basic science mechanisms and clinical effectiveness. J Pain. 2003 Apr;4(3):109-21. [PubMed]

Johnson M. Transcutaneous electrical nerve stimulation: a review of effectiveness. Nurs Stand. 2014 Jun 10;28(40):44-53. [PubMed]

Johnson M, Paley CA, Howe TE, Sluka KA. Transcutaneous electrical nerve stimulation for acute pain. Cochrane Database Syst Rev. 2015 Jun 15;(6), [PubMed]

Miller MA, Palaniswamy C, Sharma D, Reddy VY. The inappropriate shock from a subcutaneous implantable cardioverter-defibrillator due to transcutaneous electrical nerve stimulation. Heart Rhythm. 2015 Jul;12(7):1702-3. [PubMed]

Jauregui JJ, Cherian JJ, Gwam CU, Chughtai M, Mistry JB, Elmallah RK, Harwin SF, Bhave A, Mont MA. A Meta-Analysis of Transcutaneous Electrical Nerve Stimulation for Chronic Low Back Pain. Surg Technol Int. 2016 Apr;28:296-302. [PubMed]

Khadilkar A, Odebiyi DO, Brosseau L, Wells GA. Transcutaneous electrical nerve stimulation (TENS) versus placebo for chronic low-back pain. Cochrane Database Syst Rev. 2008 Oct 08;(4), [PubMed]

Young JD, Spence AJ, Power G, Behm DG. The Addition of Transcutaneous Electrical Nerve Stimulation with Roller Massage Alone or in Combination Did Not Increase Pain Tolerance or Range of Motion. J Sports Sci Med. 2018 Dec;17(4):525-532. [PMC free article] [PubMed]

 

Electrical Nerve Stimulation for Arthritis Pain, Arthritis Foundation, [AF]

 

Sport, Yoga, Meditation, Tai Chi, Qigong

Park DY, Kim YS, Ryu SH, Jin YS. The association between sedentary behavior, physical activity and hyperuricemia. Vasc Health Risk Manag. 2019 Aug 13;15:291-299. doi: 10.2147/VHRM.S200278. eCollection 2019. PubMed PMID: 31616149; [PubMed Central PMCID: PMC6698593]

Buric Ivana, Farias Miguel, Jong Jonathan, Mee Christopher, Brazil Inti A., What Is the Molecular Signature of Mind-Body Interventions? A Systematic Review of Gene Expression Changes Induced by Meditation and Related Practices, Frontiers in Immunology, Vol 8, 2017, p670, ISSN=1664-3224, [FrontImmunol]

    

Creswell JD, Irwin MR, Burklund LJ, Lieberman MD, Arevalo JM, Ma J, et al. Mindfulness-based stress reduction training reduces loneliness and proinflammatory gene expression in older adults: a small randomized controlled trial. Brain Behav Immun (2012) 26(7):1095–101, [CrossRef Full Text], [Google Scholar]

Qu S, Olafsrud SM, Meza-Zepeda LA, Saatcioglu F. Rapid gene expression changes in peripheral blood lymphocytes upon the practice of a comprehensive yoga program. PLoS One (2013) 8(4):e61910, [PubMed Abstract], [CrossRef Full Text]

Una Tellhed, Daiva Daukantaitė, Rachel E. Maddux, Thomas Svensson, Olle Melander. (2019) Yogic Breathing and Mindfulness as Stress Coping Mediate Positive Health Outcomes of Yoga. Mindfulness 10:12, pages 2703-2715,  [Crossref]

 

Michael S. Chin, Stefanos N. Kales. (2019) Understanding mind-body disciplines: A pilot study of paced breathing and dynamic muscle contraction on autonomic nervous system reactivity. Stress and Health 35:4, pages 542-548, [Crossref]

 

Laura L. Bischoff, Ann-Kathrin Otto, Carolin Hold, Bettina Wollesen. (2019) The effect of physical activity interventions on occupational stress for health personnel: A systematic review. International Journal of Nursing Studies 97, pages 94-104, [Crossref]

 

Aidan G. Cashin, Hopin Lee, Sarah E. Lamb, Sally Hopewell, Gemma Mansell, Christopher M. Williams, Steven J. Kamper, Nicholas Henschke, James H. McAuley. (2019) An overview of systematic reviews found suboptimal reporting and methodological limitations of mediation studies investigating causal mechanisms. Journal of Clinical Epidemiology 111, pages 60-68.e1, [Crossref]

 

Alisha L. Francis, Rhonda Cross Beemer. (2019) How does yoga reduce stress? Embodied cognition and emotion highlight the influence of the musculoskeletal system. Complementary Therapies in Medicine 43, pages 170-175. [Crossref]

 

Erik W. Baars, Eefje Belt-van Zoen, Thomas Breitkreuz, David Martin, Harald Matthes, Tido von Schoen-Angerer, Georg Soldner, Jan Vagedes, Herman van Wietmarschen, Olga Patijn, Merlin Willcox, Paschen von Flotow, Michael Teut, Klaus von Ammon, Madan Thangavelu, Ursula Wolf, Josef Hummelsberger, Ton Nicolai, Philippe Hartemann, Henrik Szőke, Michael McIntyre, Esther T. van der Werf, Roman Huber. (2019) The Contribution of Complementary and Alternative Medicine to Reduce Antibiotic Use: A Narrative Review of Health Concepts, Prevention, and Treatment Strategies. Evidence-Based Complementary and Alternative Medicine 2019, pages 1-29. [Crossref]

 

Gretchen A. Brenes, Stephanie Sohl, Rebecca E. Wells, Deanna Befus, Claudia L. Campos, Suzanne C. Danhauer. (2019) The Effects of Yoga on Patients with Mild Cognitive Impairment and Dementia: A Scoping Review. The American Journal of Geriatric Psychiatry 27:2, pages 188-197, [Crossref]

 

A. Harris, M. Austin, T.M. Blake, M.L. Bird. (2019) Perceived benefits and barriers to yoga participation after stroke: A focus group approach. Complementary Therapies in Clinical Practice34, pages 153-156, [Crossref]

Natalie L Trent, Sara Borden, Mindy Miraglia, Edi Pasalis, Jeffery A Dusek, Sat Bir S Khalsa. (2019) Improvements in Psychological and Occupational Well-being Following a Brief Yoga-Based Program for Education Professionals. Global Advances in Health and Medicine 8, pages 216495611985685, [Crossref]

 

Linda E. Carlson, Kirsti Toivonen, Utkarsh Subnis. (2019) Integrative Approaches to Stress Management. The Cancer Journal 25:5, pages 329-336, [Crossref]

 

A. Di Blasio, A. Tranquilli, S. Di Santo, G. Marchetti, M. Bergamin, V. Bullo, L. Cugusi, S. Tavoletta, A. Gallazzi, I. Bucci, G. Napolitano. (2018) Does the cool-down content affect cortisol and testosterone production after a whole-body workout? A pilot study. Sport Sciences for Health 14:3, pages 579-586, [Crossref]

 

Samta P. Pandya. (2018) Yoga, Emotional Awareness and Happiness in Children: A Multi-City Study of the Chinmaya Bala Vihar Programme. Child & Youth Care Forum 47:6, pages 897-917, [Crossref]

 

Andrea Zaccaro, Andrea Piarulli, Marco Laurino, Erika Garbella, Danilo Menicucci, Bruno Neri, Angelo Gemignani. (2018) How Breath-Control Can Change Your Life: A Systematic Review on Psycho-Physiological Correlates of Slow Breathing. Frontiers in Human Neuroscience 12, [Crossref]

 

Tharshanah Thayabaranathan, Maarten A Immink, Philip Stevens, Susan Hillier, Amanda G Thrift, Amy Brodtmann, Leeanne Carey, Monique F Kilkenny, Dominique A Cadilhac. (2018) Understanding the potential for yoga and tai chi interventions to moderate risk factors for stroke – a scoping review. Future Neurology 13:4, pages 239-252, [Crossref]

 

R. I. Falkenberg, C. Eising, M. L. Peters. (2018) Yoga and immune system functioning: a systematic review of randomized controlled trials. Journal of Behavioral Medicine 41:4, pages 467-482, [Crossref]

 

Daiva Daukantaitė, Una Tellhed, Rachel E. Maddux, Thomas Svensson, Olle Melander, Jacobus P. van Wouwe. (2018) Five-week yin yoga-based interventions decreased plasma adrenomedullin and increased psychological health in stressed adults: A randomized controlled trial. PLOS ONE 13:7, pages e0200518, [Crossref]

 

Dorota Kobylińska, Karol Lewczuk, Marta Marchlewska, Aneta Pietraszek. (2018) For Body and Mind: Practicing Yoga and Emotion Regulation. Social Psychological Bulletin 13:1, pages e25502. [Crossref]

 

Firdaus S. Dhabhar. (2018) The short-term stress response – Mother nature’s mechanism for enhancing protection and performance under conditions of threat, challenge, and opportunity. Frontiers in Neuroendocrinology 49, pages 175-192, [Crossref]

 

Wolf E. Mehling, Margaret A. Chesney, Thomas J. Metzler, Lizabeth A. Goldstein, Shira Maguen, Chris Geronimo, Gary Agcaoili, Deborah E. Barnes, Jennifer A. Hlavin, Thomas C. Neylan. (2018) A 12-week integrative exercise program improves self-reported mindfulness and interoceptive awareness in war veterans with posttraumatic stress symptoms. Journal of Clinical Psychology 74:4, pages 554-565, [Crossref]

 

Kristen M. Reinhardt, Jessica J. Noggle Taylor, Jennifer Johnston, Abida Zameer, Seetal Cheema, Sat Bir S. Khalsa. (2018) Kripalu Yoga for Military Veterans With PTSD: A Randomized Trial. Journal of Clinical Psychology 74:1, pages 93-108. Crossref

 

Holger Cramer, David Sibbritt, Crystal L. Park, Jon Adams, Romy Lauche. (2017) Is the practice of yoga or meditation associated with a healthy lifestyle? Results of a national cross-sectional survey of 28,695 Australian women. Journal of Psychosomatic Research 101, pages 104-109, [Crossref]

 

Ina Stephens. (2017) Medical Yoga Therapy. Children 4:2, pages 12, [Crossref]

 

Madhuri Tolahunase, Rajesh Sagar, Rima Dada. (2017) Impact of Yoga and Meditation on Cellular Aging in Apparently Healthy Individuals: A Prospective, Open-Label Single-Arm Exploratory Study. Oxidative Medicine and Cellular Longevity 2017, pages 1-9, [Crossref]

Michael de Manincor, Alan Bensoussan, Caroline A. Smith, Kylie Barr, Monica Schweickle, Lee-Lee Donoghoe, Suzannah Bourchier, Paul Fahey. (2016) INDIVIDUALIZED YOGA FOR REDUCING DEPRESSION AND ANXIETY, AND IMPROVING WELL-BEING: A RANDOMIZED CONTROLLED TRIAL. Depression and Anxiety 33:9 pages 816-828, []Crossref

 

Su-Ying Tsai. (2016) Effect of Yoga Exercise on Premenstrual Symptoms among Female Employees in Taiwan. International Journal of Environmental Research and Public Health 13:7, pages 721, [Crossref]

 

Kathryn Curtis, Kerry Kuluski, Gitte Bechsgaard, Jennifer Ridgway, Joel Katz. (2016) Evaluation of a Specialized Yoga Program for Persons Admitted to a Complex Continuing Care Hospital: A Pilot Study. Evidence-Based Complementary and Alternative Medicine 2016, pages 1-16, [Crossref]

 

Pamela E. Jeter, Jeremiah Slutsky, Nilkamal Singh, Sat Bir S. Khalsa. (2015) Yoga as a Therapeutic Intervention: A Bibliometric Analysis of Published Research Studies from 1967 to 2013. The Journal of Alternative and Complementary Medicine 21:10 pages 586-592, [Crossref]

 

Peter Payne, Mardi A. Crane-Godreau. (2015) The preparatory set: a novel approach to understanding stress, trauma, and body-mind therapies. Frontiers in Human Neuroscience 9, [Crossref]

Bagga, O. P., & Gandhi, A. (1983). A comparative study of the effect of transcendental meditation and Shavasana practice on the cardiovascular system. Indian Heart Journal, 35, 39–45, [PubMed][Google Scholar]

 

Barnes, P. M., Bloom, B., & Nahin, R. L. (2008). Complementary and alternative medicine use among adults and children: the United States, 2007. National Health Statistics Reports, 12, 1–24, [PubMed]

 

Black, D. S., Cole, S. W., Irwin, M. R., Breen, E., St. Cyr, N. M., Nazarian, N., … Lavretsky, H. (2012). Yogic meditation reverses NF-kB and IRF-related transcriptome dynamics in leukocytes of family dementia caregivers in a randomized controlled trial. Psychoneuroendocrinology, 38, 348–355, [Crossref]

Braun, T. D., Park, C. L., & Conboy, L. A. (2012). Psychological well-being, health behaviors, and weight loss among participants in a residential, Kripalu yoga-based weight loss program. International Journal of Yoga Therapy, 22, 9–21, [PubMed]

Brisbon, N. M., & Lowery, G. A. (2011). Mindfulness and levels of stress: A comparison of beginner and advanced Hatha yoga practitioners. Journal of Religion and Health, 50, 931–941,  [PubMed]

 

Bussing, A., Hedtstuck, A., Khalsa, S. B. S., Ostermann, T., & Heusser, P. (2012). Development of specific aspects of spirituality during a 6-month intensive yoga practice. Evidence-based Complementary and Alternative Medicine, 2012, 1–7, [Crossref],

 

Chiesa, A., & Serretti, A. (2009). Mindfulness-based stress reduction for stress management in healthy people: A review and meta-analysis. Journal of Alternative and Complementary Medicine, 15, 593–600, [Crossref]

 

Chong, C. S. M., Tsunaka, M., Tsang, H. W., Chan, E. P., & Cheung, W. M. (2011). Effects of yoga on stress management in healthy adults: A systematic review. Alternative Therapies in Health and Medicine, 17, 32–38, [PubMed][Web of Science ®]

Cohen, S., Kamarck, T., & Mermelstein, R. (1983). A global measure of perceived stress. Journal of Health and Social Behavior, 24, 385–396, [Crossref][PubMed][Web of Science ®]

Cooper, E. L. (2004). Complementary and alternative medicine, when rigorous, can be science. Evidence-based Complementary and Alternative Medicine, 1(1), 1–4, [Crossref][PubMed][Web of Science ®]

Dunn, K. D. (2008). A review of the literature examining the physiological processes underlying the therapeutic benefits of Hatha yoga. Advances in Mind-body Medicine, 23, 10–18, [PubMed]

 

Elwy, R. A., Groessl, E. J., Eisen, S. V., Riley, K. E., Maiya, M., Lee, J. P., Sarkin, A., & Park, C. L. (2014). A systematic scoping literature review of yoga intervention components and intervention quality. American Journal of Preventative Medicine, 47, 220–232, [Crossref][PubMed][Web of Science ®]

 

Evans, S., Cousins, L., Tsao, J. C., Sternlieb, B., & Zeltzer, L. K. (2011). Protocol for a randomized controlled study of Iyengar yoga for youth with irritable bowel syndrome. Trials, 12(1), [Crossref][PubMed][Web of Science ®]

 

Field, T. (2012). Exercise research on children and adolescents. Complementary Therapies in Clinical Practice, 18(1), 54–59, [Crossref][PubMed]

Greeson, J. M., Webber, D. M., Smoski, M. J., Brantley, J. G., Ekblad, A. G., Suarez, E. C., & Wolever, R. Q. (2011). Changes in spirituality partly explain health-related quality of life outcomes after Mindfulness-Based Stress Reduction. Journal of Behavioral Medicine, 34, 508–518, [Crossref][PubMed][Web of Science ®]

 

Gururaja, D., Harano, K., Toyotake, I., & Kobayashi, H. (2011). Effect of yoga on mental health: Comparative study between young and senior subjects in Japan. International Journal of Yoga, 4, 7–12, [Crossref][PubMed]

 

Heilbronn, F. S. (1992). The use of Hatha yoga as a strategy for coping with stress in management development. Management Education and Development, 23, 131–139, [Crossref]

 

Holzel, B. K., Lazar, S. W., Gard, T., Schuman-Olivier, Z., Vago, D. R., & Ott, U. (2011). How does mindfulness work? Proposing mechanisms of action from a conceptual and neural perspective. Perspectives on Psychological Science, 6, 537–559, [Crossref][Web of Science ®]

 

Innes, K. E., Vincent, H. K., & Taylor, A. G. (2007). Chronic stress and insulin resistance-related indices of cardiovascular disease risk, part 2: A potential role for mind-body therapies. Alternative Therapies in Health and Medicine, 13, 44–51, [PubMed][Web of Science ®]

 

Juster, R.-P., McEwen, B. S., & Lupien, S. J. (2009). Allostatic load biomarkers of chronic stress and impact on health and cognition. Neuroscience and Biobehavioral Reviews, 35(1), 2–16, [Crossref][PubMed]

Kiecolt-Glaser, J. K., Christian, L., Preston, H., Houts, C. R., Malarkey, W. B., Emery, C. F., & Glaser, R. (2010). Stress, inflammation, and yoga practice. Psychosomatic Medicine, 72(2), 113–121, [Crossref][PubMed][Web of Science ®]

Kuntsevich, V., Bushell, W. C., & Theise, N. D. (2010). Mechanisms of yogic practices in health, aging, and disease. Mount Sinai Journal of Medicine, 77, 559–569, [Crossref][PubMed][Web of Science ®]

 

Li, A. W., & Goldsmith, C.-A. W. (2012). The effects of yoga on anxiety and stress. Alternative Medicine Review, 17, 21–35, [PubMed]

​​

Michalsen, A., Grossman, P., Acil, A., Langhorst, J., Ludtke, R., Esch, T., … Dobos, G. J. (2005). Rapid stress reduction and anxiolysis among distressed women as a consequence of a three-month intensive yoga program. Medical Science Monitor, 11, 555–561, [Web of Science ®]

​​

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & The PRISMA Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Annals of Internal Medicine, 151, 264–269, [Crossref][PubMed][Web of Science ®]

Park, C. L., Groessl, E., Maiya, M., Sarkin, A., Eisen, S., Riley, K. E., & Elwy, E. R. (2014). Comparison groups in yoga research: A systematic review and critical evaluation of the literature. Unpublished manuscript, [Google Scholar]

​​

Riley, D. (2004). Hatha yoga and the treatment of illness (commentary). Alternative Therapies in Health and Medicine, 10, 20–21, [PubMed][Web of Science ®]

 

Rizzolo, D., Zipp, G. P., Stiskal, D., & Simpkins, S. (2009). Stress management strategies for students: The immediate effects of yoga, humor, and reading on stress. Journal of College Teaching & Learning, 6, 79–88, [Google Scholar]

 

Roehr, B. (2008). Managing stress: Yoga, tai chi may help. Dermatology Times, pp. 22–23, [Google Scholar]

 

Ross, A., & Thomas, S. (2010). The health benefits of yoga and exercise: A review of comparison studies. Journal of Alternative and Complementary Medicine, 16(1), 3–12, [Crossref][PubMed][Web of Science ®]

 

Sengupta, P., Chaudhuri, P., & Bhattacharya, K. (2013). Male reproductive health and yoga. International Journal of Yoga, 6(2), 87–95, [Crossref][PubMed]

Sieverdes, J. C., Mueller, M., Gregoski, M. J., Brunner-Jackson, B., McQuade, L., & Treiber, F. A.(2014). Effects of Hatha yoga on blood pressure, salivary α-Amylase, and cortisol function among normotensive and prehypertensive youth. The Journal of Alternative and Complementary Medicine, 20, 241–250, [Google Scholar]

Streeter, C. C., Gerbarg, P. L., Saper, R. B., Ciraulo, D. A., & Brown, R. P. (2012). Effects of yoga on the autonomic nervous system, gamma-aminobutyric-acid, and allostasis in epilepsy, depression, and post-traumatic stress disorder. Medical Hypotheses, 78, 571–579, [Crossref][PubMed][Web of Science ®]

 

Taylor, M. J. (2003). Yoga therapeutics: An ancient, dynamic systems theory. Techniques in Orthopaedics, 18(1), 115–125. doi:10.1097/00013611-200303000-00017, [Crossref]

 

Vijayalakshmi, P., Madanmohan, B. A. B., Patil, A., & Kumar, B. P. (2004). Modulation of stress induced by isometric handgrip test in hypertensive patients following yogic relaxation training. Indian Journal of Physiological Pharmacology, 48, 59–61, [PubMed]

 

West, J., Otte, C., Geher, K., Johnson, J., & Mohr, D. C. (2004). Effects of hatha yoga and African dance on perceived stress, affect, and salivary cortisol. Annals of Behavioral Medicine, 28(2), 114–118. doi:10.1207/s15324796abm2802_6, [Crossref][PubMed][Web of Science ®]

 

Woodyard, C. (2011). Exploring the therapeutic effects of yoga and its ability to increase quality of life. International Journal of Yoga, 4(2), 49–54. doi:10.4103/0973-6131.85485, [Crossref][PubMed]

 

Yadav, R. K., Magan, D., Mehta, N., Sharma, R., & Mahapatra, S. C. (2012). Efficacy of a short-term yoga-based lifestyle intervention in reducing stress and inflammation: Preliminary results. Journal of Alternative and Complementary Medicine, 18, 662–667. doi:10.1089/acm.2011.0265, [Crossref][PubMed][Web of Science ®]

 

Yang, K. (2007). A review of yoga programs for four leading risk factors of chronic diseases. Journal of Complementary and Alternative Medicine, 4, 487–491. doi:10.1093/ecam/nem154, [Crossref][PubMed][Web of Science ®]